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Annoucements

e Reading for next class: Introductory Statistics with Randomization and Simulation
o From chapter 2: from the beginning through to the end of section 2.2

 Homework 3 posted, due next Monday, April 16th by 11:59pm.

3/ 21



Statistical computations in R
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Useful statistical functions

The following R functions will be useful for computing basic statistical measures of
any numerical data column (variable)
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Useful statistical functions

The following R functions will be useful for computing basic statistical measures of
any numerical data column (variable)

o mean( ) :Computes the average

e median( ) :Computes the median

e min( ) : Finds the minimum value

e max( ) : Finds the maximum value

o sd():Computes the standard deviation
e IQR():Computes the interquartile range

o quantile():Computes quantiles (percentiles)
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e The summarize( ) function is appropriate here:

county %>%
summarize(

mean = mean(mean_work_travel),
median = median(mean_work_travel),
min = min(mean_work_travel),
max = max(mean_work_travel),
sd = sd(mean_work_travel),
igr = IQR(mean_work_travel))
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Using the statistical functions

 Every function except quantile() will always return a single quantity

e The summarize( ) function is appropriate here:

county %>%
summarize(
mean = mean(mean_work_travel),
median = median(mean_work_travel),
min = min(mean_work_travel),
max = max(mean_work_travel),
sd = sd(mean_work_travel),
igr = IQR(mean_work_travel))

mean median min max sd iqr

22.72558 224 4.3 442 5514159 7.1
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e quantile() can output one value at a time, or many values

e To be ableto useitin summarize( ), stick with one value at a time

county %>%
summarize(

Q1 = quantile(mean_work_travel, probs = c(0.25), type = 1),
Q2 = quantile(mean_work_travel, probs = c(0.50), type = 1),
Q3 = quantile(mean_work_travel, probs = c(0.75), type = 1),
Q4 = quantile(mean_work_travel, probs = c(1.00), type = 1))
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Using the statistical functions

e quantile() can output one value at a time, or many values

e To be ableto useitin summarize( ), stick with one value at a time

county %>%
summarize(

Q1 = quantile(mean_work_travel, probs = c(0.25), type = 1),
Q2 = quantile(mean_work_travel, probs = c(0.50), type = 1),
Q3 = quantile(mean_work_travel, probs = c(0.75), type = 1),
Q4 = quantile(mean_work_travel, probs = c(1.00), type = 1))

Q1 Q2 Q3 Q4
19 224 261 442
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From histograms to probability mass
functions
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Data distributions

 Early on in the course, we learned that histograms via geom_histogram() area
convenient way to represent numerical data in a single column (variable)
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Data distributions

 Early on in the course, we learned that histograms via geom_histogram() area
convenient way to represent numerical data in a single column (variable)
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e A histogram represents the frequency that values show up for a given variable

e binwidth changes the "buckets" for the data, impacting the frequency heights
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Comparing distributions with unequal observations

e So far, we've skipped over the question of how to compare distributions with
varying numbers of observations
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e So far, we've skipped over the question of how to compare distributions with
varying numbers of observations

e In our current example of average times to travel to work, we can group the data
by state and compare Virginia to Maryland

20 -

] state
Maryland

10- 1 l:‘ Virginia

10 20 30 40
mean_work_travel

frequency
|

 In the dataset, Virginia has 134 counties compared to Maryland's 24 counties

« We need to normalize the frequency counts
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From frequency to probability
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From frequency to probability

e Normalization is straightforward, just divide the frequency count in each "bucket"
by the total number of observations in the histogram

e If you group by categories, that you should divide by the number of observations
in each group
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Probability mass function (PMF)
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o
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« Just like a histogram, except that the bar heights reflect probabilities instead of
frequency counts

 Allows for a meaningful comparison of distributions with different numbers of
observations

In which state am | more likely to have a 30 minute commute?
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Creating PMFs in R

e With ggplot2, it's straightforward to convert a histogram into a PMF
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e With ggplot2, it's straightforward to convert a histogram into a PMF

county %>%
filter(state == "Virginia" | state == "Maryland") %>%
ggplot() +
geom_histogram(
mapping = aes(x = mean_work_travel, fill = state),
binwidth = 2, center = 0, position = "identity", alpha = 0.4) +
labs(y = "frequency") +
coord_cartesian(xlim = c(2.5, 47.5))
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Creating PMFs in R

e With ggplot2, it's straightforward to convert a histogram into a PMF

county %>%

filter(state == "Virginia" | state == "Maryland") %>%

ggplot() +

geom_histogram(
mapping = aes(x = mean_work_travel, y = ..density.., fill = state),
binwidth = 2, center = 0, position = "identity", alpha = 0.4) +

labs(y = "PMF") +

coord_cartesian(xlim = c(2.5, 47.5))

0.100 -

0.075 -

state
L
S | Maryland
o 0.050 o
Virginia

0.025 -
0.000 -

10 20 30 40
mean_work_travel

12 /21



Obtaining PMF values

13/ 21



Obtaining PMF values

1. Compute them manually

13/ 21



Obtaining PMF values

1. Compute them manually

2. Extract them from your ggplot2 visualization

13/ 21



Obtaining PMF values

1.

2. Extract them from your ggplot2 visualization

13/ 21



Obtaining PMF values

2. Extract them from your ggplot2 visualization

Assign the figure to a variable

va_md_pmf_figure <- county %>%

filter(state == "Virginia" | state == "Maryland") %>%
ggplot() +
geom_histogram(
mapping = aes(x = mean_work_travel, y = ..density.., fill = state),

binwidth = 2, center = 0)
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Obtaining PMF values

2. Extract them from your ggplot2 visualization

Assign the figure to a variable

va_md_pmf_figure <- county %>%

filter(state == "Virginia" | state == "Maryland") %>%
ggplot() +
geom_histogram(
mapping = aes(x = mean_work_travel, y = ..density.., fill = state),

binwidth = 2, center = 0)
Use ggplot_build() with pluck() and as_tibble() as follows:

va_md_pmf_data <- va_md_pmf_figure %>%
ggplot_build() %>%
pluck("data", 1) %>%
as_tibble()
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Obtaining PMF values

va_md_pmf_data %>%
glimpse()

## Observations: 30
## Variables: 17

## $ fill <chr> "#00BFC4", "#F8766D", "#OOBFC4", "#F8766D", "#O0OBFC4"...
#t $ vy <dbl> 0.003731343, 0.003731343, 0.029850746, 0.029850746, O...
## $ count <dbl> 1, o, 8, 0, 7, 0, 7, 0, 26, 5, 11, 2, 16, 1, 11, 4, 1

#t $ x <dbl> 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 2...
## $ xmin <dbl> 13, 13, 15, 15, 17, 17, 19, 19, 21, 21, 23, 23, 25, 2...
##t $ xmax <dbl> 15, 15, 17, 17, 19, 19, 21, 21, 23, 23, 25, 25, 27, 2

## $ density <dbl> 0.003731343, 0.000000000, 0.029850746, 0.000000000, O...
## $ ncount <dbl> 0.03846154, 0.00000000, 0.30769231, 0.00000000, 0.269...
## $ ndensity <dbl> 10.30769, 0.00000, 82.46154, 0.00000, 72.15385, 0.000...
## $ PANEL <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
## $ group <int> 2, 1, 2,1, 2,1, 2,1, 2,1, 2,1, 2,1, 2,1, 2,1,...
## $ ymin <dbl> 0.000000000, 0.003731343, 0.000000000, 0.029850746, O...
## $ ymax <dbl> 0.003731343, 0.003731343, 0.029850746, 0.029850746, O...
## $ colour <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N...
## $ size <dbl> 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5...
## $ linetype <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
## $ alpha <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N...
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Obtaining PMF values

To get the Maryland PMF data:

md_pmf_data <- va_md_pmf_data %>%

filter(group == 1) %>%
select(x, density)

14
16
18
20
22
24

26

density

0

0

0

0
0.104166666666667
0.0416666666666667

0.0208333333333333
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Obtaining PMF values

To get the Virginia PMF data:

va_pmf_data <- va_md_pmf_data %>%

filter(group == 2) %>%
select(x, density)

14
16
18
20
22
24

26

density
0.00373134328358209
0.0298507462686567
0.0261194029850746
0.0261194029850746
0.0970149253731343
0.041044776119403

0.0597014925373134
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Cumulative distribution functions
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Data by percentile rank
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Data by percentile rank

PMFs are handy exploratory tools, but as with histograms, the binwidth can
strongly influence what your plot looks like

e We can overcome this problem if we convert the data into a sorted list of
percentile ranks

e Advantages
o Don't need to select a binsize
o Easier to compare similarities and differences of different data distributions
o Different classes of data distributions have distinct shapes

« The cumulative distribution function (CDF) lets us map between percentile rank
and each value in a data column
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Creating CDFs in R

ggplot2 comes with a handy convenience function stat_ecdf (), which lets you
create CDF functions from your data
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Creating CDFs in R

ggplot2 comes with a handy convenience function stat_ecdf (), which lets you
create CDF functions from your data

county %>%

ggplot() +
stat_ecdf(mapping = aes(x = mean_work_travel)) +
labs(y = "CDF")
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Creating CDFs in R
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Creating CDFs in R

We can do all the usual operations, such as grouping by state

county %>%
filter(state == "Virginia" | state == "Maryland") %>%

ggplot() +
stat_ecdf(mapping = aes(x = mean_work_travel, color = state)) +

labs(y = "CDF")
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Get CDF data out of plot

Assign the plot to a variable:

va_md_cdf_figure <- county %>%
filter(state == "Virginia" | state == "Maryland") %>%
ggplot() +
stat_ecdf(mapping = aes(x = mean_work_travel, color = state)) +
labs(y = "CDF")

Use ggplot build() with pluck() and as_tibble():

va_md_cdf_df <- va_md_cdf_figure %>%
ggplot_build() %>%
pluck("data", 1) %>%
as_tibble() %>%
select(group, x, vy) %>%
rename(mean_work_travel = "x", cdf = "y", state = "group") %>%
mutate(state = recode(state, "1 = "Maryland", “2° = "Virginia")) %>%
arrange(desc(state), mean_work_travel)
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Get CDF data out of plot

state

Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia

Virginia

mean_work_travel cdf

-Inf
13.8
15.4
15.5
15.6
16.3
16.6
16.7
16.9

17.2

0
0.00746268656716418
0.0223880597014925
0.0298507462686567
0.0373134328358209
0.0447761194029851
0.0522388059701493
0.0597014925373134
0.0671641791044776

0.0746268656716418
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Analyzing the normal distribution
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68-95-99.7 Rule

e For nearly normally distributed data,
e about 68% falls within 1 SD of the mean,
e about 95% falls within 2 SD of the mean,
e about 99.7% falls within 3 SD of the mean.

e It is possible for observations to fall 4, 5, or more standard
deviations away from the mean, but these occurrences are
very rare if the data are nearly normal.

68%

95%

99.7%
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Describing variability using the 68-95-99.7 Rule

SAT scores are distributed nearly normally with mean 1500 and
standard deviation 300.



Describing variability using the 68-95-99.7 Rule

SAT scores are distributed nearly normally with mean 1500 and
standard deviation 300.

e ~68% of students score between 1200 and 1800 on the SAT.
e ~95% of students score between 900 and 2100 on the SAT.
e ~99.7% of students score between 600 and 2400 on the SAT.

’g 68% ;\

95%

99.7%

I T T T T T 1
600 900 1200 1500 1800 2100 2400



Number of hours of sleep on school nights
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e Mean = 6.88 hours, SD = 0.92 hrs
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e Mean = 6.88 hours, SD = 0.92 hrs
e 72% of the data are within 1 SD of the mean: 6.88 + 0.93
e 92% of the data are within 1 SD of the mean: 6.88 + 2 x 0.93
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Number of hours of sleep on school nights

80
60
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Mean = 6.88 hours, SD = 0.92 hrs

72% of the data are within 1 SD of the mean: 6.88 + 0.93

92% of the data are within 1 SD of the mean: 6.88 + 2 x 0.93

99% of the data are within 1 SD of the mean: 6.88 +3x0.93  ,,



Evaluating the normal approxima-
tion




Normal probability plot

A histogram and normal probability plot of a sample of 100 male
heights.
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Anatomy of a normal probability plot

e Data are plotted on the y-axis of a normal probability plot, and
theoretical quantiles (following a normal distribution) on the
X-axis.

e If there is a linear relationship in the plot, then the data follow
a nearly normal distribution.

e Constructing a normal probability plot requires calculating
percentiles and corresponding z-scores for each observation,
which is tedious. Therefore we generally rely on software
when making these plots.
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Below is a histogram and normal probability plot for the NBA heights
from the 2008-2009 season. Do these data appear to follow a nor-

mal distribution?
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Below is a histogram and normal probability plot for the NBA heights
from the 2008-2009 season. Do these data appear to follow a nor-

mal distribution?
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Why do the points on the normal probability have jumps?



Normal probability plot and skewness

Right skew - Points bend up and to the left of the line.

e Left skew- Points bend down and to the right of the
' line.
/ Short tails (narrower than the normal distribution) -
/ Points follow an S shaped-curve.
; Long tails (wider than the normal distribution) - Points
— start below the line, bend to follow it, and end above

it.
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Central limit theorem
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Central limit theorem

Review the Central Limit Theorem animation on Seeing Theory
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http://students.brown.edu/seeing-theory/probability-distributions/index.html#section3

The slides with blue headers originate from the following source:

e The Chapter 3 Openintro Statistics slides developed by Mine Cetinkaya-Rundel
and made available under the CC BY-SA 3.0 license.
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https://github.com/OpenIntroOrg/openintro-statistics-slides
http://creativecommons.org/licenses/by-sa/3.0/us/

