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Annoucements

Reading for next class: Introductory Statistics with Randomization and Simulation

From chapter 2: from the beginning through to the end of section 2.2

Homework 3 posted, due next Monday, April 16th by 11:59pm.
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Useful statistical functions
The following R functions will be useful for computing basic statistical measures of
any numerical data column (variable)
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The following R functions will be useful for computing basic statistical measures of
any numerical data column (variable)

mean() : Computes the average

median() : Computes the median

min() : Finds the minimum value

max() : Finds the maximum value

sd() : Computes the standard deviation

IQR() : Computes the interquartile range

quantile() : Computes quantiles (percentiles)
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The summarize()  function is appropriate here:

county %>%
  summarize(
    mean = mean(mean_work_travel),
    median = median(mean_work_travel),
    min = min(mean_work_travel),
    max = max(mean_work_travel),
    sd = sd(mean_work_travel),
    iqr = IQR(mean_work_travel))
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mean median min max sd iqr

22.72558 22.4 4.3 44.2 5.514159 7.1
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county %>%
  summarize(
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Using the statistical functions
quantile()  can output one value at a time, or many values

To be able to use it in summarize() , stick with one value at a time

Q1 Q2 Q3 Q4

19 22.4 26.1 44.2

county %>%
  summarize(
    Q1 = quantile(mean_work_travel, probs = c(0.25), type = 1),
    Q2 = quantile(mean_work_travel, probs = c(0.50), type = 1),
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From histograms to probability mass
functions
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Data distributions
Early on in the course, we learned that histograms via geom_histogram()  are a
convenient way to represent numerical data in a single column (variable)
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mean_work_travel

25.1

25.8

23.8

28.3

33.2

28.1

25.1

...
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Comparing distributions with unequal observations
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So far, we've skipped over the question of how to compare distributions with
varying numbers of observations

In our current example of average times to travel to work, we can group the data
by state and compare Virginia to Maryland

In the dataset, Virginia has 134 counties compared to Maryland's 24 counties

We need to normalize the frequency counts
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Probability mass function (PMF)

Just like a histogram, except that the bar heights re�ect probabilities instead of
frequency counts

Allows for a meaningful comparison of distributions with different numbers of
observations

In which state am I more likely to have a 30 minute commute?

Maryland
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With ggplot2 , it's straightforward to convert a histogram into a PMF

12 / 21



Creating PMFs in R
With ggplot2 , it's straightforward to convert a histogram into a PMF

county %>%
  filter(state == "Virginia" | state == "Maryland") %>%
  ggplot() +
  geom_histogram(
    mapping = aes(x = mean_work_travel, fill = state),
    binwidth = 2, center = 0, position = "identity", alpha = 0.4) +
  labs(y = "frequency") +
  coord_cartesian(xlim = c(2.5, 47.5))
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county %>%
  filter(state == "Virginia" | state == "Maryland") %>%
  ggplot() +
  geom_histogram(
    mapping = aes(x = mean_work_travel, y = ..density.., fill = state),
    binwidth = 2, center = 0, position = "identity", alpha = 0.4) +
  labs(y = "PMF") +
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1. Compute them manually

2. Extract them from your ggplot2  visualization

Assign the �gure to a variable

va_md_pmf_figure <- county %>%
  filter(state == "Virginia" | state == "Maryland") %>%
  ggplot() +
  geom_histogram(
    mapping = aes(x = mean_work_travel, y = ..density.., fill = state),
    binwidth = 2, center = 0)
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Obtaining PMF values
1. Compute them manually

2. Extract them from your ggplot2  visualization

Assign the �gure to a variable

Use ggplot_build()  with pluck()  and as_tibble()  as follows:

va_md_pmf_figure <- county %>%
  filter(state == "Virginia" | state == "Maryland") %>%
  ggplot() +
  geom_histogram(
    mapping = aes(x = mean_work_travel, y = ..density.., fill = state),
    binwidth = 2, center = 0)

va_md_pmf_data <- va_md_pmf_figure %>%
  ggplot_build() %>%
  pluck("data", 1) %>%
  as_tibble()
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Obtaining PMF values
va_md_pmf_data %>%
  glimpse()

## Observations: 30
## Variables: 17
## $ fill     <chr> "#00BFC4", "#F8766D", "#00BFC4", "#F8766D", "#00BFC4"...
## $ y        <dbl> 0.003731343, 0.003731343, 0.029850746, 0.029850746, 0...
## $ count    <dbl> 1, 0, 8, 0, 7, 0, 7, 0, 26, 5, 11, 2, 16, 1, 11, 4, 1...
## $ x        <dbl> 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 2...
## $ xmin     <dbl> 13, 13, 15, 15, 17, 17, 19, 19, 21, 21, 23, 23, 25, 2...
## $ xmax     <dbl> 15, 15, 17, 17, 19, 19, 21, 21, 23, 23, 25, 25, 27, 2...
## $ density  <dbl> 0.003731343, 0.000000000, 0.029850746, 0.000000000, 0...
## $ ncount   <dbl> 0.03846154, 0.00000000, 0.30769231, 0.00000000, 0.269...
## $ ndensity <dbl> 10.30769, 0.00000, 82.46154, 0.00000, 72.15385, 0.000...
## $ PANEL    <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
## $ group    <int> 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,...
## $ ymin     <dbl> 0.000000000, 0.003731343, 0.000000000, 0.029850746, 0...
## $ ymax     <dbl> 0.003731343, 0.003731343, 0.029850746, 0.029850746, 0...
## $ colour   <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N...
## $ size     <dbl> 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5...
## $ linetype <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
## $ alpha    <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N...
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Obtaining PMF values
To get the Maryland PMF data:

x density

14 0

16 0

18 0

20 0

22 0.104166666666667

24 0.0416666666666667

26 0.0208333333333333

... ...

md_pmf_data <- va_md_pmf_data %>%
  filter(group == 1) %>%
  select(x, density)
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Obtaining PMF values
To get the Virginia PMF data:

x density

14 0.00373134328358209

16 0.0298507462686567

18 0.0261194029850746

20 0.0261194029850746

22 0.0970149253731343

24 0.041044776119403

26 0.0597014925373134

... ...

va_pmf_data <- va_md_pmf_data %>%
  filter(group == 2) %>%
  select(x, density)
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Cumulative distribution functions
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Data by percentile rank
PMFs are handy exploratory tools, but as with histograms, the binwidth can
strongly in�uence what your plot looks like

We can overcome this problem if we convert the data into a sorted list of
percentile ranks

Advantages

Don't need to select a binsize

Easier to compare similarities and differences of different data distributions

Different classes of data distributions have distinct shapes

The cumulative distribution function (CDF) lets us map between percentile rank
and each value in a data column
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Creating CDFs in R
ggplot2  comes with a handy convenience function stat_ecdf() , which lets you
create CDF functions from your data
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Creating CDFs in R
ggplot2  comes with a handy convenience function stat_ecdf() , which lets you
create CDF functions from your data

county %>%
  ggplot() +
  stat_ecdf(mapping = aes(x = mean_work_travel)) +
  labs(y = "CDF")
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Creating CDFs in R
We can do all the usual operations, such as grouping by state

county %>%
  filter(state == "Virginia" | state == "Maryland") %>%
  ggplot() +
  stat_ecdf(mapping = aes(x = mean_work_travel, color = state)) +
  labs(y = "CDF")
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Get CDF data out of plot
Assign the plot to a variable:

Use ggplot_build()  with pluck()  and as_tibble() :

va_md_cdf_figure <- county %>%
  filter(state == "Virginia" | state == "Maryland") %>%
  ggplot() +
  stat_ecdf(mapping = aes(x = mean_work_travel, color = state)) +
  labs(y = "CDF")

va_md_cdf_df <- va_md_cdf_figure %>%
  ggplot_build() %>%
  pluck("data", 1) %>%
  as_tibble() %>%
  select(group, x, y) %>%
  rename(mean_work_travel = "x", cdf = "y", state = "group") %>%
  mutate(state = recode(state, `1` = "Maryland", `2` = "Virginia")) %>%
  arrange(desc(state), mean_work_travel)
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Get CDF data out of plot

state mean_work_travel cdf

Virginia -Inf 0

Virginia 13.8 0.00746268656716418

Virginia 15.4 0.0223880597014925

Virginia 15.5 0.0298507462686567

Virginia 15.6 0.0373134328358209

Virginia 16.3 0.0447761194029851

Virginia 16.6 0.0522388059701493

Virginia 16.7 0.0597014925373134

Virginia 16.9 0.0671641791044776

Virginia 17.2 0.0746268656716418

... ... ...
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Analyzing the normal distribution
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68-95-99.7 Rule

• For nearly normally distributed data,
• about 68% falls within 1 SD of the mean,
• about 95% falls within 2 SD of the mean,
• about 99.7% falls within 3 SD of the mean.

• It is possible for observations to fall 4, 5, or more standard
deviations away from the mean, but these occurrences are
very rare if the data are nearly normal.

µ − 3σ µ − 2σ µ − σ µ µ + σ µ + 2σ µ + 3σ

99.7%

95%

68%
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Describing variability using the 68-95-99.7 Rule

SAT scores are distributed nearly normally with mean 1500 and
standard deviation 300.

• ∼68% of students score between 1200 and 1800 on the SAT.
• ∼95% of students score between 900 and 2100 on the SAT.
• ∼99.7% of students score between 600 and 2400 on the SAT.

600 900 1200 1500 1800 2100 2400

99.7%
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68%
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standard deviation 300.
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Number of hours of sleep on school nights
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Evaluating the normal approxima-
tion



Normal probability plot

A histogram and normal probability plot of a sample of 100 male
heights.

Male heights (in)
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Anatomy of a normal probability plot

• Data are plotted on the y-axis of a normal probability plot, and
theoretical quantiles (following a normal distribution) on the
x-axis.

• If there is a linear relationship in the plot, then the data follow
a nearly normal distribution.

• Constructing a normal probability plot requires calculating
percentiles and corresponding z-scores for each observation,
which is tedious. Therefore we generally rely on software
when making these plots.
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Below is a histogram and normal probability plot for the NBA heights
from the 2008-2009 season. Do these data appear to follow a nor-
mal distribution?
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Why do the points on the normal probability have jumps?
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Normal probability plot and skewness

Right skew - Points bend up and to the left of the line.

Left skew- Points bend down and to the right of the
line.

Short tails (narrower than the normal distribution) -
Points follow an S shaped-curve.

Long tails (wider than the normal distribution) - Points
start below the line, bend to follow it, and end above
it.
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Central limit theorem
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Central limit theorem

Review the Central Limit Theorem animation on Seeing Theory

20 / 21

http://students.brown.edu/seeing-theory/probability-distributions/index.html#section3


Credits

The slides with blue headers originate from the following source:

The Chapter 3 OpenIntro Statistics slides developed by Mine Çetinkaya-Rundel
and made available under the CC BY-SA 3.0 license.
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https://github.com/OpenIntroOrg/openintro-statistics-slides
http://creativecommons.org/licenses/by-sa/3.0/us/

