Class 26: Modeling II

April 26, 2018

General

Annoucements

- Homework 4 due on Friday, April 27th by 11:59pm
- Homework 5 (to be posted) will be due on Friday, May 4th by 11:59pm
- Start thinking about your Final Portfolios, due Friday, May 11th by 11:59pm

Line fitting, residuals, and correlation

Modeling numerical variables

In this unit we will learn to quantify the relationship between two numerical variables, as well as modeling numerical response variables using a numerical or categorical explanatory variable.

Poverty vs. HS graduate rate

The scatterplot below shows the relationship between HS graduate rate in all 50 US states and DC and the \% of residents who live below the poverty line (income below $\$ 23,050$ for a family of 4 in 2012).

Response variable?

Poverty vs. HS graduate rate

The scatterplot below shows the relationship between HS graduate rate in all 50 US states and DC and the \% of residents who live below the poverty line (income below $\$ 23,050$ for a family of 4 in 2012).

Response variable?

\% in poverty

Poverty vs. HS graduate rate

The scatterplot below shows the relationship between HS graduate rate in all 50 US states and DC and the \% of residents who live below the poverty line (income below $\$ 23,050$ for a family of 4 in 2012).

Response variable?
\% in poverty
Explanatory variable?

Poverty vs. HS graduate rate

The scatterplot below shows the relationship between HS graduate rate in all 50 US states and DC and the \% of residents who live below the poverty line (income below $\$ 23,050$ for a family of 4 in 2012).

Response variable?
\% in poverty
Explanatory variable?
\% HS grad

Poverty vs. HS graduate rate

The scatterplot below shows the relationship between HS graduate rate in all 50 US states and DC and the \% of residents who live below the poverty line (income below $\$ 23,050$ for a family of 4 in 2012).

Response variable?

\% in poverty
Explanatory variable?
\% HS grad
Relationship?

Poverty vs. HS graduate rate

The scatterplot below shows the relationship between HS graduate rate in all 50 US states and DC and the \% of residents who live below the poverty line (income below $\$ 23,050$ for a family of 4 in 2012).

Response variable?

\% in poverty
Explanatory variable?
\% HS grad

Relationship?

linear, negative, moderately strong

Quantifying the relationship

- Correlation describes the strength of the linear association between two variables.

Quantifying the relationship

- Correlation describes the strength of the linear association between two variables.
- It takes values between -1 (perfect negative) and +1 (perfect positive).

Quantifying the relationship

- Correlation describes the strength of the linear association between two variables.
- It takes values between -1 (perfect negative) and +1 (perfect positive).
- A value of 0 indicates no linear association.

Guessing the correlation

Which of the following is the best guess for the correlation between \% in poverty and \% HS grad?
(a) 0.6
(b) -0.75
(c) -0.1
(d) 0.02
(e) -1.5

Guessing the correlation

Which of the following is the best guess for the correlation between \% in poverty and \% HS grad?
(a) 0.6
(b) -0.75
(c) -0.1
(d) 0.02
(e) -1.5

Guessing the correlation

Which of the following is the best guess for the correlation between \% in poverty and \% HS grad?
(a) 0.1
(b) -0.6
(c) -0.4
(d) 0.9
(e) 0.5

Guessing the correlation

Which of the following is the best guess for the correlation between \% in poverty and \% HS grad?
(a) 0.1
(b) -0.6
(c) -0.4
(d) 0.9
(e) 0.5

Assessing the correlation

Which of the following is has the strongest correlation, i.e. correlation coefficient closest to +1 or -1 ?

Assessing the correlation

Which of the following is has the strongest correlation, i.e. correlation coefficient closest to +1 or -1 ?

(b) \rightarrow
correlation
means linear
association

Fitting a line by least squares regression

Eyeballing the line

Which of the following appears to be the line that best fits the linear relationship between \% in poverty and \% HS grad? Choose one.

Eyeballing the line

Which of the following appears to be the line that best fits the linear relationship between \% in poverty and \% HS grad? Choose one.
(a)

Residuals

Residuals are the leftovers from the model fit: Data = Fit + Residual

Residuals (cont.)

Residual

Residual is the difference between the observed $\left(y_{i}\right)$ and predicted \hat{y}_{i}.

$$
e_{i}=y_{i}-\hat{y}_{i}
$$

Residuals (cont.)

Residual

Residual is the difference between the observed $\left(y_{i}\right)$ and predicted \hat{y}_{i}.

$$
e_{i}=y_{i}-\hat{y}_{i}
$$

- \% living in poverty in DC is 5.44% more than predicted.

Residuals (cont.)

Residual

Residual is the difference between the observed $\left(y_{i}\right)$ and predicted \hat{y}_{i}.

$$
e_{i}=y_{i}-\hat{y}_{i}
$$

- \% living in poverty in DC is 5.44% more than predicted.
- \% living in poverty in RI is 4.16% less than predicted.

A measure for the best line

- We want a line that has small residuals:

A measure for the best line

- We want a line that has small residuals:

1. Option 1: Minimize the sum of magnitudes (absolute values) of residuals

$$
\left|e_{1}\right|+\left|e_{2}\right|+\cdots+\left|e_{n}\right|
$$

A measure for the best line

- We want a line that has small residuals:

1. Option 1: Minimize the sum of magnitudes (absolute values) of residuals

$$
\left|e_{1}\right|+\left|e_{2}\right|+\cdots+\left|e_{n}\right|
$$

2. Option 2: Minimize the sum of squared residuals - least squares

$$
e_{1}^{2}+e_{2}^{2}+\cdots+e_{n}^{2}
$$

A measure for the best line

- We want a line that has small residuals:

1. Option 1: Minimize the sum of magnitudes (absolute values) of residuals

$$
\left|e_{1}\right|+\left|e_{2}\right|+\cdots+\left|e_{n}\right|
$$

2. Option 2: Minimize the sum of squared residuals - least squares

$$
e_{1}^{2}+e_{2}^{2}+\cdots+e_{n}^{2}
$$

- Why least squares?

A measure for the best line

- We want a line that has small residuals:

1. Option 1: Minimize the sum of magnitudes (absolute values) of residuals

$$
\left|e_{1}\right|+\left|e_{2}\right|+\cdots+\left|e_{n}\right|
$$

2. Option 2: Minimize the sum of squared residuals - least squares

$$
e_{1}^{2}+e_{2}^{2}+\cdots+e_{n}^{2}
$$

- Why least squares?

1. Most commonly used

A measure for the best line

- We want a line that has small residuals:

1. Option 1: Minimize the sum of magnitudes (absolute values) of residuals

$$
\left|e_{1}\right|+\left|e_{2}\right|+\cdots+\left|e_{n}\right|
$$

2. Option 2: Minimize the sum of squared residuals - least squares

$$
e_{1}^{2}+e_{2}^{2}+\cdots+e_{n}^{2}
$$

- Why least squares?

1. Most commonly used
2. Easier to compute by hand and using software

A measure for the best line

- We want a line that has small residuals:

1. Option 1: Minimize the sum of magnitudes (absolute values) of residuals

$$
\left|e_{1}\right|+\left|e_{2}\right|+\cdots+\left|e_{n}\right|
$$

2. Option 2: Minimize the sum of squared residuals - least squares

$$
e_{1}^{2}+e_{2}^{2}+\cdots+e_{n}^{2}
$$

- Why least squares?

1. Most commonly used
2. Easier to compute by hand and using software
3. In many applications, a residual twice as large as another is usually more than twice as bad

The least squares line

Notation:

- Intercept:
- Parameter: β_{0}
- Point estimate: b_{0}
- Slope:
- Parameter: β_{1}
- Point estimate: b_{1}

Given...

	\% HS grad	\% in poverty
	(x)	(y)
mean	$\bar{x}=86.01$	$\bar{y}=11.35$
sd	$s_{x}=3.73$	$s_{y}=3.1$
	correlation	$R=-0.75$

Slope

Slope

The slope of the regression can be calculated as

$$
b_{1}=\frac{s_{y}}{s_{x}} R
$$

Slope

Slope

The slope of the regression can be calculated as

$$
b_{1}=\frac{s_{y}}{s_{x}} R
$$

In context...

$$
b_{1}=\frac{3.1}{3.73} \times-0.75=-0.62
$$

Slope

Slope

The slope of the regression can be calculated as

$$
b_{1}=\frac{s_{y}}{s_{x}} R
$$

In context...

$$
b_{1}=\frac{3.1}{3.73} \times-0.75=-0.62
$$

Interpretation

For each additional \% point in HS graduate rate, we would expect the \% living in poverty to be lower on average by 0.62% points.

Intercept

Intercept

The intercept is where the regression line intersects the y-axis. The calculation of the intercept uses the fact the a regression line always passes through (\bar{x}, \bar{y}).

$$
b_{0}=\bar{y}-b_{1} \bar{x}
$$

Intercept

Intercept

The intercept is where the regression line intersects the y-axis. The calculation of the intercept uses the fact the a regression line always passes through (\bar{x}, \bar{y}).

$$
b_{0}=\bar{y}-b_{1} \bar{x}
$$

Intercept

Intercept

The intercept is where the regression line intersects the y-axis. The calculation of the intercept uses the fact the a regression line always passes through (\bar{x}, \bar{y}).

$$
b_{0}=\bar{y}-b_{1} \bar{x}
$$

$$
\begin{aligned}
b_{0} & =11.35-(-0.62) \times 86.01 \\
& =64.68
\end{aligned}
$$

Which of the following is the correct interpretation of the intercept?
(a) For each \% point increase in HS graduate rate, \% living in poverty is expected to increase on average by 64.68%.
(b) For each \% point decrease in HS graduate rate, \% living in poverty is expected to increase on average by 64.68%.
(c) Having no HS graduates leads to 64.68% of residents living below the poverty line.
(d) States with no HS graduates are expected on average to have 64.68% of residents living below the poverty line.
(e) In states with no HS graduates \% living in poverty is expected to increase on average by 64.68\%.

Which of the following is the correct interpretation of the intercept?
(a) For each \% point increase in HS graduate rate, \% living in poverty is expected to increase on average by 64.68%.
(b) For each \% point decrease in HS graduate rate, \% living in poverty is expected to increase on average by 64.68%.
(c) Having no HS graduates leads to 64.68% of residents living below the poverty line.
(d) States with no HS graduates are expected on average to have 64.68% of residents living below the poverty line.
(e) In states with no HS graduates \% living in poverty is expected to increase on average by 64.68\%.

More on the intercept

Since there are no states in the dataset with no HS graduates, the intercept is of no interest, not very useful, and also not reliable since the predicted value of the intercept is so far from the bulk of the data.

Regression line

$$
\% \text { in } \widehat{\text { poverty }}=64.68-0.62 \% \mathrm{HS} \text { grad }
$$

Interpretation of slope and intercept

- Intercept: When $x=0, y$ is expected to equal the intercept.
- Slope: For each unit in x, y is expected to increase / decrease on average by the slope.

Note: These statements are not causal, unless the study is a randomized controlled experiment.

Prediction

- Using the linear model to predict the value of the response variable for a given value of the explanatory variable is called prediction, simply by plugging in the value of x in the linear model equation.
- There will be some uncertainty associated with the predicted value.

Extrapolation

- Applying a model estimate to values outside of the realm of the original data is called extrapolation.
- Sometimes the intercept might be an extrapolation.

Examples of extrapolation

Examples of extrapolation

$\begin{aligned} & \text { BBCC } \\ & \text { NEWS } \end{aligned}$	1) Watch One-Minute World News
News Front Page	Last Updated: Thursday, 30 September, 2004, 04:04 GMT 05:04 UK
	E-mail this to a friend Printable version
	Women 'may outsprint men by 2156'
Africa Americas	Women sprinters may be outrunning men in the 2156
Asia-Pacific	Olympics if they continue to
Europe	close the gap at the
Middle East	scientists.
uth Asia	
UK	An Oxford University study
England	
Northern Ireland Scotland	faster than they have ever done over 100 m .
UK Politics	
	At their current rate of improvement, they should overtake men within 150 years, said Dr Andrew Tatem.
Magazine	
Magazine	The study, comparing winning times for the Olympic 100m
Business Health	since 1900, is published in the journal Nature.
Science \& Environment	However, former British Olympic sprinter Derek Redmond told the BBC: "I find it difficult to believe.
Technology	
Entertainment	"I can see the gap closing between men and women but I
Also in the news	can't necessarily see it being overtaken because mens' times are also going to improve."

Examples of extrapolation

Momentous sprint at the 2156 Olympics?

Women sprinters are closing the gap on men and may one day overtake them.

Figure 1 The winning Olympic 100 -metre sprint times for men (blue points) and women (red points), with superimposed best-fit linear regression lines (solid black lines) and coefficients of determination. The regression lines are extrapolated (broken blue and red lines for men and women, respectively) and 95% confidence intervals (dotted black lines) based on the avalable points are superimposed. The projections intersect just before the 2156 Olympics, when the winning women's 100 -metre sprint time of 8.079 s will be faster than the men's at 8.098 s .

Conditions for the least squares line

1. Linearity

Conditions for the least squares line

1. Linearity
2. Nearly normal residuals

Conditions for the least squares line

1. Linearity
2. Nearly normal residuals
3. Constant variability

Conditions: (1) Linearity

- The relationship between the explanatory and the response variable should be linear.

Conditions: (1) Linearity

- The relationship between the explanatory and the response variable should be linear.
- Methods for fitting a model to non-linear relationships exist, but are beyond the scope of this class. If this topic is of interest, an Online Extra is available on openintro.org covering new techniques.

Conditions: (1) Linearity

- The relationship between the explanatory and the response variable should be linear.
- Methods for fitting a model to non-linear relationships exist, but are beyond the scope of this class. If this topic is of interest, an Online Extra is available on openintro.org covering new techniques.
- Check using a scatterplot of the data, or a residuals plot.

Anatomy of a residuals plot

$\Delta \mathrm{RI}$:

$$
\begin{aligned}
\% \text { HS grad } & =81 \quad \% \text { in poverty }=10.3 \\
\% \text { in poverty } & =64.68-0.62 * 81=14.46 \\
e & =\% \text { in poverty }-\% \text { in poverty } \\
& =10.3-14.46=-4.16
\end{aligned}
$$

Anatomy of a residuals plot

$\Delta \mathrm{RI}$:

$\% H S$ grad $=81 \quad \%$ in poverty $=10.3$
$\%$ in poverty $=64.68-0.62 * 81=14.46$

$$
\begin{aligned}
e & =\% \text { in poverty }-\% \text { in poverty } \\
& =10.3-14.46=-4.16
\end{aligned}
$$

- DC:
$\%$ HS grad $=86 \quad$ \% in poverty $=16.8$
$\%$ in poverty $=64.68-0.62 * 86=11.36$

$$
\begin{aligned}
e & =\% \text { in poverty }-\% \text { in poverty } \\
& =16.8-11.36=5.44
\end{aligned}
$$

Conditions: (2) Nearly normal residuals

- The residuals should be nearly normal.

Conditions: (2) Nearly normal residuals

- The residuals should be nearly normal.
- This condition may not be satisfied when there are unusual observations that don't follow the trend of the rest of the data.

Conditions: (2) Nearly normal residuals

- The residuals should be nearly normal.
- This condition may not be satisfied when there are unusual observations that don't follow the trend of the rest of the data.
- Check using a histogram or normal probability plot of residuals.

Conditions: (3) Constant variability

- The variability of points around the least squares line should be roughly constant.

Conditions: (3) Constant variability

- The variability of points around the least squares line should be roughly constant.
- This implies that the variability of residuals around the 0 line should be roughly constant as well.

Conditions: (3) Constant variability

- The variability of points around the least squares line should be roughly constant.
- This implies that the variability of residuals around the 0 line should be roughly constant as well.
- Also called homoscedasticity.

Conditions: (3) Constant variability

- The variability of points around the least squares line should be roughly constant.
- This implies that the variability of residuals around the 0 line should be roughly constant as well.
- Also called homoscedasticity.
- Check using a histogram or normal probability plot of residuals.

Checking conditions

What condition is this linear model obviously violating?
(a) Constant variability
(b) Linear relationship
(c) Normal residuals
(d) No extreme outliers

Checking conditions

What condition is this linear model obviously violating?
(a) Constant variability
(b) Linear relationship
(c) Normal residuals
(d) No extreme outliers

Checking conditions

What condition is this linear model obviously violating?
(a) Constant variability
(b) Linear relationship
(c) Normal residuals
(d) No extreme outliers

Checking conditions

What condition is this linear model obviously violating?
(a) Constant variability
(b) Linear relationship
(c) Normal residuals
(d) No extreme outliers

- The strength of the fit of a linear model is most commonly evaluated using R^{2}.
- The strength of the fit of a linear model is most commonly evaluated using R^{2}.
- R^{2} is calculated as the square of the correlation coefficient.
- The strength of the fit of a linear model is most commonly evaluated using R^{2}.
- R^{2} is calculated as the square of the correlation coefficient.
- It tells us what percent of variability in the response variable is explained by the model.
- The strength of the fit of a linear model is most commonly evaluated using R^{2}.
- R^{2} is calculated as the square of the correlation coefficient.
- It tells us what percent of variability in the response variable is explained by the model.
- The remainder of the variability is explained by variables not included in the model or by inherent randomness in the data.
- The strength of the fit of a linear model is most commonly evaluated using R^{2}.
- R^{2} is calculated as the square of the correlation coefficient.
- It tells us what percent of variability in the response variable is explained by the model.
- The remainder of the variability is explained by variables not included in the model or by inherent randomness in the data.
- For the model we've been working with, $R^{2}=-0.62^{2}=0.38$.

Interpretation of R^{2}

Which of the below is the correct interpretation of $R=-0.62, R^{2}=0.38$?
(a) 38% of the variability in the \% of HG graduates among the 51 states is explained by the model.
(b) 38% of the variability in the \% of residents living in poverty among the 51 states is explained by the model.
(c) 38% of the time $\%$ HS graduates predict $\%$ living in poverty correctly.

(d) 62% of the variability in the $\%$ of residents living in poverty among the 51 states is explained by the model.

Interpretation of R^{2}

Which of the below is the correct interpretation of $R=-0.62, R^{2}=0.38$?
(a) 38% of the variability in the \% of HG graduates among the 51 states is explained by the model.
(b) 38% of the variability in the $\%$ of residents living in poverty among the 51 states is explained by the model.
(c) 38% of the time \% HS graduates predict \% living in poverty correctly.

(d) 62% of the variability in the \% of residents living in poverty among the 51 states is explained by the model.

Poverty vs. region (east, west)

$$
\text { poverty }=11.17+0.38 \times \text { west }
$$

- Explanatory variable: region, reference level: east
- Intercept: The estimated average poverty percentage in eastern states is 11.17%

Poverty vs. region (east, west)

$$
\text { poverty }=11.17+0.38 \times \text { west }
$$

- Explanatory variable: region, reference level: east
- Intercept: The estimated average poverty percentage in eastern states is 11.17%
- This is the value we get if we plug in 0 for the explanatory variable

Poverty vs. region (east, west)

$$
\text { poverty }=11.17+0.38 \times \text { west }
$$

- Explanatory variable: region, reference level: east
- Intercept: The estimated average poverty percentage in eastern states is 11.17%
- This is the value we get if we plug in 0 for the explanatory variable
- Slope: The estimated average poverty percentage in western states is 0.38% higher than eastern states.

Poverty vs. region (east, west)

$$
\text { poverty }=11.17+0.38 \times \text { west }
$$

- Explanatory variable: region, reference level: east
- Intercept: The estimated average poverty percentage in eastern states is 11.17%
- This is the value we get if we plug in 0 for the explanatory variable
- Slope: The estimated average poverty percentage in western states is 0.38% higher than eastern states.
- Then, the estimated average poverty percentage in western states is $11.17+0.38=11.55 \%$.

Poverty vs. region (east, west)

$$
\text { poverty }=11.17+0.38 \times \text { west }
$$

- Explanatory variable: region, reference level: east
- Intercept: The estimated average poverty percentage in eastern states is 11.17%
- This is the value we get if we plug in 0 for the explanatory variable
- Slope: The estimated average poverty percentage in western states is 0.38% higher than eastern states.
- Then, the estimated average poverty percentage in western states is $11.17+0.38=11.55 \%$.
- This is the value we get if we plug in 1 for the explanatory variable

Poverty vs. region (northeast, midwest, west, south)

Which region (northeast, midwest, west, or south) is the reference level?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	9.50	0.87	10.94	0.00
region4midwest	0.03	1.15	0.02	0.98
region4west	1.79	1.13	1.59	0.12
region4south	4.16	1.07	3.87	0.00

(a) northeast
(b) midwest
(c) west
(d) south
(e) cannot tell

Poverty vs. region (northeast, midwest, west, south)

Which region (northeast, midwest, west, or south) is the reference level?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.50	0.87	10.94	0.00
region4midwest	0.03	1.15	0.02	0.98
region4west	1.79	1.13	1.59	0.12
region4south	4.16	1.07	3.87	0.00

(a) northeast
(b) midwest
(c) west
(d) south
(e) cannot tell

Poverty vs. region (northeast, midwest, west, south)

Which region (northeast, midwest, west, or south) has the lowest poverty percentage?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	9.50	0.87	10.94	0.00
region4midwest	0.03	1.15	0.02	0.98
region4west	1.79	1.13	1.59	0.12
region4south	4.16	1.07	3.87	0.00

(a) northeast
(b) midwest
(c) west
(d) south
(e) cannot tell

Poverty vs. region (northeast, midwest, west, south)

Which region (northeast, midwest, west, or south) has the lowest poverty percentage?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.50	0.87	10.94	0.00
region4midwest	0.03	1.15	0.02	0.98
region4west	1.79	1.13	1.59	0.12
region4south	4.16	1.07	3.87	0.00

(a) northeast
(b) midwest
(c) west
(d) south
(e) cannot tell

Linear models in the tidyverse

Basic method for linear fitting in \mathbf{R}

- We use the sim1 dataset loaded via library (modelr) for the following demonstration.

Basic method for linear fitting in \mathbf{R}

- We use the sim1 dataset loaded via library(modelr) for the following demonstration.
library(modelr)

Basic method for linear fitting in \mathbf{R}

- We use the sim1 dataset loaded via library (modelr) for the following demonstration.
library(modelr)

The first few rows of the dataset are:
head(sim1)

\mathbf{x}	\mathbf{y}
1	4.199913
1	7.510634
1	2.125473
2	8.988857
2	10.243105
2	11.296823

Visualize the dataset

- Let's look at a scatterplot of the dataset:

Visualize the dataset

- Let's look at a scatterplot of the dataset:

```
ggplot(sim1) +
    geom_point(aes(x, y))
```


ggplot2 can create linear models

- Remember geom_smooth ? We can just this to create linear models with ggplot2:

ggplot2 can create linear models

- Remember geom_smooth ? We can just this to create linear models with ggplot2:

```
ggplot(sim1) +
    geom_point(mapping = aes(x = x, y = y)) +
    geom_smooth(mapping = aes(x = x, y = y), method = "lm", se = FALSE)
```


R's standard method

- We're limited to visual inspection if we only use geom_smooth().

R's standard method

- We're limited to visual inspection if we only use geom_smooth().
- To create linear models, we use the $\operatorname{lm}()$ function:

R's standard method

- We're limited to visual inspection if we only use geom_smooth().
- To create linear models, we use the $\operatorname{lm}()$ function:

```
sim1_mod <- lm(y ~ x, data = sim1)
```


Summary of linear model

- For a general report about the model, use summary():

Summary of linear model

- For a general report about the model, use summary():

```
summary(sim1_mod)
##
## Call:
## lm(formula = y ~ x, data = sim1)
##
## Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & 1Q & Median & 3Q & Max \\
\#\# & -4.1469 & -1.5197 & 0.1331 & 1.4670 & 4.6516
\end{tabular}
##
## Coefficients:
\begin{tabular}{lrrrl} 
\#\# & Estimate Std. Error t & value \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
\#\# (Intercept) & 4.2208 & 0.8688 & 4.858 & \(4.09 \mathrm{e}-05\)
\end{tabular} ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.203 on 28 degrees of freedom
## Multiple R-squared: 0.8846, Adjusted R-squared: 0.8805
## F-statistic: 214.7 on 1 and 28 DF, p-value: 1.173e-14
```


Reporting the model

- We report the model as:

Reporting the model

- We report the model as:

$$
y=2.0515 x+4.2208
$$

Method for plotting our model

- The following is a basic recipe for visualizing our models

Method for plotting our model

- The following is a basic recipe for visualizing our models
- Create a series of x values with data_grid():

```
grid <- data_grid(sim1, x)
```


Method for plotting our model

- The following is a basic recipe for visualizing our models
- Create a series of x values with data_grid():

```
grid <- data_grid(sim1, x)
```

$$
\mathbf{x}
$$

$$
1
$$

$$
2
$$

$$
3
$$

$$
4
$$

$$
5
$$

$$
6
$$

Extract predictions and residuals

Extract predictions and residuals

- Use add_predictions() to import predictions into your tibble

Extract predictions and residuals

- Use add_predictions() to import predictions into your tibble grid2 <- add_predictions(grid, sim1_mod)

Extract predictions and residuals

- Use add_predictions() to import predictions into your tibble grid2 <- add_predictions(grid, sim1_mod)
- Use add_residuals() to extract the residuals from your fit.

Extract predictions and residuals

- Use add_predictions() to import predictions into your tibble

```
grid2 <- add_predictions(grid, sim1_mod)
```

- Use add_residuals() to extract the residuals from your fit.

```
sim1_resid <- add_residuals(sim1, sim1_mod)
```


Visualize the full model

- Create a plot:

Visualize the full model

- Create a plot:

```
ggplot(sim1) +
    geom_point(aes(x = x, y = y)) +
    geom_line(aes(x = x, y = pred), data = grid2, color = "red", size = 1)
```


Inspect the residuals

- Use geom_histogram() to inspect the absolute residuals.

Inspect the residuals

- Use geom_histogram() to inspect the absolute residuals.

```
ggplot(sim1_resid) +
    geom_histogram(aes(x = resid), binwidth = 1)
```


Are the residuals normal?

- The residuals should be nearly normal.

Are the residuals normal?

- The residuals should be nearly normal.
- A good test for normal residuals is a Q-Q plot:

Are the residuals normal?

- The residuals should be nearly normal.
- A good test for normal residuals is a Q-Q plot:

```
qq_x <- qnorm(p = c(0.25, 0.75))
qq_y <- quantile(x = pull(sim1_resid, resid), probs = c(0.25, 0.75), type = 1)
qq_slope <- diff(qq_y) / diff(qq_x)
qq_int <- pluck(qq_y, 1) - qq_slope * pluck(qq_x, 1)
ggplot(sim1_resid) +
    geom_qq(aes(sample = resid)) +
    geom_abline(intercept = qq_int, slope = qq_slope)
```


Are the residuals normal?

- The residuals should be nearly normal.
- A good test for normal residuals is a Q-Q plot:

Residual spread

- Inspect the residual spread as a function of x to check whether the variability is constant or not:

Residual spread

- Inspect the residual spread as a function of x to check whether the variability is constant or not:

```
ggplot(sim1_resid) +
    geom_ref_line(h = 0) +
    geom_point(aes(x = x, y = resid))
```


Credits

modelr package examples adapted from content in chapters 23.2 and 23.3 of R for Data Science by Hadley Wickham and Garrett Grolemund and made available under the CC BY-NC-ND 3.0 license.

Content in the slides with blue headers adapted from the chapter 7 OpenIntro Statistics slides developed by Mine Çetinkaya-Rundel and made available under the CC BY-SA 3.0 license.

