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Annoucements

Homework 4 due on Friday, April 27th by 11:59pm

Homework 5 (to be posted) will be due on Friday, May 4th by 11:59pm

Start thinking about your Final Portfolios, due Friday, May 11th by 11:59pm
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http://spring18.cds101.com/assignments/homework-4/


Line fitting, residuals, and
correlation



Modeling numerical variables

In this unit we will learn to quantify the relationship between two
numerical variables, as well as modeling numerical response variables
using a numerical or categorical explanatory variable.
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Poverty vs. HS graduate rate

The scatterplot below shows the relationship between HS graduate rate
in all 50 US states and DC and the % of residents who live below the
poverty line (income below $23,050 for a family of 4 in 2012).
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Quantifying the relationship

• Correlation describes the strength of the linear association between
two variables.

• It takes values between -1 (perfect negative) and +1 (perfect
positive).

• A value of 0 indicates no linear association.
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Guessing the correlation

Which of the following is the best guess for the correlation between % in
poverty and % HS grad?

(a) 0.6

(b) -0.75

(c) -0.1

(d) 0.02

(e) -1.5
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Assessing the correlation

Which of the following is has the strongest correlation, i.e. correlation
coefficient closest to +1 or -1?

(a) (b)

(c) (d)
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Assessing the correlation

Which of the following is has the strongest correlation, i.e. correlation
coefficient closest to +1 or -1?

(a) (b)

(c) (d)

(b)→
correlation
means linear
association
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Fitting a line by least squares
regression



Eyeballing the line

Which of the following
appears to be the line
that best fits the linear
relationship between
% in poverty and %
HS grad? Choose
one.
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Residuals

Residuals are the leftovers from the model fit: Data = Fit + Residual
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Residuals (cont.)

Residual

Residual is the difference between the observed (yi) and predicted ŷi.

ei = yi − ŷi
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ŷ

DC

RI

• % living in poverty in DC
is 5.44% more than
predicted.

• % living in poverty in RI
is 4.16% less than
predicted.
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A measure for the best line

• We want a line that has small residuals:

1. Option 1: Minimize the sum of magnitudes (absolute values) of
residuals

|e1| + |e2| + · · · + |en|

2. Option 2: Minimize the sum of squared residuals – least squares

e2
1 + e2

2 + · · · + e2
n

• Why least squares?
1. Most commonly used
2. Easier to compute by hand and using software
3. In many applications, a residual twice as large as another is usually

more than twice as bad
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The least squares line

ŷ = β0 + β1x

���
���predicted y �

�
��	

intercept

@
@@R

slope

HH
HHHj

explanatory variable

Notation:

• Intercept:
• Parameter: β0

• Point estimate: b0

• Slope:
• Parameter: β1

• Point estimate: b1
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Given...
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mean x̄ = 86.01 ȳ = 11.35
sd sx = 3.73 sy = 3.1

correlation R = −0.75
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Slope

Slope

The slope of the regression can be calculated as

b1 =
sy

sx
R

In context...
b1 =

3.1
3.73

× −0.75 = −0.62

Interpretation
For each additional % point in HS graduate rate, we would expect the %
living in poverty to be lower on average by 0.62% points.
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Intercept

Intercept

The intercept is where the regression line intersects the y-axis. The
calculation of the intercept uses the fact the a regression line always
passes through (x̄, ȳ).

b0 = ȳ − b1x̄
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= 64.68
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Which of the following is the correct interpretation of the intercept?

(a) For each % point increase in HS graduate rate, % living in poverty is
expected to increase on average by 64.68%.

(b) For each % point decrease in HS graduate rate, % living in poverty is
expected to increase on average by 64.68%.

(c) Having no HS graduates leads to 64.68% of residents living below
the poverty line.

(d) States with no HS graduates are expected on average to have
64.68% of residents living below the poverty line.

(e) In states with no HS graduates % living in poverty is expected to
increase on average by 64.68%.
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More on the intercept

Since there are no states in the dataset with no HS graduates, the
intercept is of no interest, not very useful, and also not reliable since the
predicted value of the intercept is so far from the bulk of the data.
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Regression line

̂% in poverty = 64.68 − 0.62 % HS grad
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Interpretation of slope and intercept

• Intercept: When x = 0, y is
expected to equal the intercept.

• Slope: For each unit in x, y is
expected to increase / decrease
on average by the slope.

Note: These statements are not causal, unless the study is a randomized controlled

experiment.
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Prediction

• Using the linear model to predict the value of the response variable
for a given value of the explanatory variable is called prediction,
simply by plugging in the value of x in the linear model equation.

• There will be some uncertainty associated with the predicted value.

80 85 90

6

8

10

12

14

16

18

% HS grad

%
 in

 p
ov

er
ty

19



Extrapolation

• Applying a model estimate to values outside of the realm of the
original data is called extrapolation.

• Sometimes the intercept might be an extrapolation.
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Examples of extrapolation
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Examples of extrapolation
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Examples of extrapolation
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Conditions for the least squares line

1. Linearity

2. Nearly normal residuals

3. Constant variability
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Conditions: (1) Linearity

• The relationship between the explanatory and the response variable
should be linear.

• Methods for fitting a model to non-linear relationships exist, but are
beyond the scope of this class. If this topic is of interest, an Online
Extra is available on openintro.org covering new techniques.

• Check using a scatterplot of the data, or a residuals plot.
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Anatomy of a residuals plot
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� DC:

% HS grad = 86 % in poverty = 16.8
̂% in poverty = 64.68 − 0.62 ∗ 86 = 11.36

e = % in poverty − ̂% in poverty

= 16.8 − 11.36 = 5.44
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Conditions: (2) Nearly normal residuals

• The residuals should be nearly normal.

• This condition may not be satisfied when there are unusual
observations that don’t follow the trend of the rest of the data.

• Check using a histogram or normal probability plot of residuals.
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Conditions: (3) Constant variability
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• The variability of points around
the least squares line should be
roughly constant.

• This implies that the variability
of residuals around the 0 line
should be roughly constant as
well.

• Also called homoscedasticity.

• Check using a histogram or
normal probability plot of
residuals.
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Checking conditions

What condition is this linear model
obviously violating?

(a) Constant variability

(b) Linear relationship

(c) Normal residuals

(d) No extreme outliers x x

y
g$
re
si
du
al
s

x

y
g$
re
si
du
al
s

29



Checking conditions

What condition is this linear model
obviously violating?

(a) Constant variability

(b) Linear relationship

(c) Normal residuals

(d) No extreme outliers x x

y
g$
re
si
du
al
s

x

y
g$
re
si
du
al
s

29



Checking conditions

What condition is this linear model
obviously violating?

(a) Constant variability

(b) Linear relationship

(c) Normal residuals

(d) No extreme outliersx x

y
g$
re
si
du
al
s

x

y
g$
re
si
du
al
s

30



Checking conditions

What condition is this linear model
obviously violating?

(a) Constant variability

(b) Linear relationship

(c) Normal residuals

(d) No extreme outliersx x

y
g$
re
si
du
al
s

x

y
g$
re
si
du
al
s

30



R2

• The strength of the fit of a linear model is most commonly evaluated
using R2.

• R2 is calculated as the square of the correlation coefficient.

• It tells us what percent of variability in the response variable is
explained by the model.

• The remainder of the variability is explained by variables not
included in the model or by inherent randomness in the data.

• For the model we’ve been working with, R2 = −0.622 = 0.38.
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Interpretation of R2

Which of the below is the correct interpretation of R = −0.62, R2 = 0.38?

(a) 38% of the variability in the % of HG
graduates among the 51 states is explained
by the model.

(b) 38% of the variability in the % of residents
living in poverty among the 51 states is
explained by the model.

(c) 38% of the time % HS graduates predict %
living in poverty correctly.

(d) 62% of the variability in the % of residents
living in poverty among the 51 states is
explained by the model.
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Poverty vs. region (east, west)

̂poverty = 11.17 + 0.38 × west

• Explanatory variable: region, reference level: east

• Intercept: The estimated average poverty percentage in eastern
states is 11.17%

• This is the value we get if we plug in 0 for the explanatory variable

• Slope: The estimated average poverty percentage in western states
is 0.38% higher than eastern states.
• Then, the estimated average poverty percentage in western states is

11.17 + 0.38 = 11.55%.
• This is the value we get if we plug in 1 for the explanatory variable
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Poverty vs. region (northeast, midwest, west, south)

Which region (northeast, midwest, west, or south) is the reference level?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.50 0.87 10.94 0.00

region4midwest 0.03 1.15 0.02 0.98
region4west 1.79 1.13 1.59 0.12

region4south 4.16 1.07 3.87 0.00

(a) northeast

(b) midwest

(c) west

(d) south

(e) cannot tell

34



Poverty vs. region (northeast, midwest, west, south)

Which region (northeast, midwest, west, or south) is the reference level?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.50 0.87 10.94 0.00

region4midwest 0.03 1.15 0.02 0.98
region4west 1.79 1.13 1.59 0.12

region4south 4.16 1.07 3.87 0.00

(a) northeast

(b) midwest

(c) west

(d) south

(e) cannot tell

34



Poverty vs. region (northeast, midwest, west, south)

Which region (northeast, midwest, west, or south) has the lowest poverty
percentage?
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region4midwest 0.03 1.15 0.02 0.98
region4west 1.79 1.13 1.59 0.12

region4south 4.16 1.07 3.87 0.00

(a) northeast

(b) midwest

(c) west

(d) south

(e) cannot tell

35



Poverty vs. region (northeast, midwest, west, south)

Which region (northeast, midwest, west, or south) has the lowest poverty
percentage?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.50 0.87 10.94 0.00

region4midwest 0.03 1.15 0.02 0.98
region4west 1.79 1.13 1.59 0.12

region4south 4.16 1.07 3.87 0.00

(a) northeast

(b) midwest

(c) west

(d) south

(e) cannot tell

35



Linear models in the tidyverse
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Basic method for linear fitting in R
We use the sim1  dataset loaded via library(modelr)  for the following
demonstration.
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Basic method for linear fitting in R
We use the sim1  dataset loaded via library(modelr)  for the following
demonstration.

The �rst few rows of the dataset are:

x y

1 4.199913

1 7.510634

1 2.125473

2 8.988857

2 10.243105

2 11.296823

library(modelr)

head(sim1)
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Visualize the dataset
Let's look at a scatterplot of the dataset:
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Visualize the dataset
Let's look at a scatterplot of the dataset:

ggplot(sim1) +
  geom_point(aes(x, y))
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ggplot2 can create linear models
Remember geom_smooth ? We can just this to create linear models with
ggplot2 :
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ggplot2 can create linear models
Remember geom_smooth ? We can just this to create linear models with
ggplot2 :

ggplot(sim1) +
  geom_point(mapping = aes(x = x, y = y)) +
  geom_smooth(mapping = aes(x = x, y = y), method = "lm", se = FALSE)
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R's standard method
We're limited to visual inspection if we only use geom_smooth() .
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R's standard method
We're limited to visual inspection if we only use geom_smooth() .

To create linear models, we use the lm()  function:

sim1_mod <- lm(y ~ x, data = sim1)
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Summary of linear model
For a general report about the model, use summary() :
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Summary of linear model
For a general report about the model, use summary() :

summary(sim1_mod)

## 
## Call:
## lm(formula = y ~ x, data = sim1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1469 -1.5197  0.1331  1.4670  4.6516 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   4.2208     0.8688   4.858 4.09e-05 ***
## x             2.0515     0.1400  14.651 1.17e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.203 on 28 degrees of freedom
## Multiple R-squared:  0.8846,    Adjusted R-squared:  0.8805 
## F-statistic: 214.7 on 1 and 28 DF,  p-value: 1.173e-14
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Reporting the model
We report the model as:
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Reporting the model
We report the model as:

y = 2.0515x + 4.2208
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Method for plotting our model
The following is a basic recipe for visualizing our models
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Extract predictions and residuals
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Extract predictions and residuals
Use add_predictions()  to import predictions into your tibble

Use add_residuals()  to extract the residuals from your �t.

grid2 <- add_predictions(grid, sim1_mod)

sim1_resid <- add_residuals(sim1, sim1_mod)
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Visualize the full model
Create a plot:
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Visualize the full model
Create a plot:

ggplot(sim1) +
  geom_point(aes(x = x, y = y)) +
  geom_line(aes(x = x, y = pred), data = grid2, color = "red", size = 1)
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Inspect the residuals
Use geom_histogram()  to inspect the absolute residuals.
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Inspect the residuals
Use geom_histogram()  to inspect the absolute residuals.

ggplot(sim1_resid) +
  geom_histogram(aes(x = resid), binwidth = 1)
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Are the residuals normal?
The residuals should be nearly normal.
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Are the residuals normal?
The residuals should be nearly normal.

A good test for normal residuals is a Q-Q plot:

qq_x <- qnorm(p = c(0.25, 0.75))
qq_y <- quantile(x = pull(sim1_resid, resid), probs = c(0.25, 0.75), type = 1)
qq_slope <- diff(qq_y) / diff(qq_x)
qq_int <- pluck(qq_y, 1) - qq_slope * pluck(qq_x, 1)
ggplot(sim1_resid) +
  geom_qq(aes(sample = resid)) +
  geom_abline(intercept = qq_int, slope = qq_slope)
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Are the residuals normal?
The residuals should be nearly normal.

A good test for normal residuals is a Q-Q plot:
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Residual spread
Inspect the residual spread as a function of x  to check whether the variability is
constant or not:
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Residual spread
Inspect the residual spread as a function of x  to check whether the variability is
constant or not:

ggplot(sim1_resid) +
  geom_ref_line(h = 0) +
  geom_point(aes(x = x, y = resid))
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Credits

modelr  package examples adapted from content in chapters 23.2 and 23.3 of R for
Data Science by Hadley Wickham and Garrett Grolemund and made available under
the CC BY-NC-ND 3.0 license.

Content in the slides with blue headers adapted from the chapter 7 OpenIntro
Statistics slides developed by Mine Çetinkaya-Rundel and made available under the CC
BY-SA 3.0 license.
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