

Class 28: Modeling IV

May 3, 2018

These slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

General

- Homework 5 due Friday, May 4th by 11:59pm
 - **Reminder:** First 3 questions required, last 3 questions can be completed (in order) for extra credit
- Final Portfolio due Friday, May 11th by 11:59pm
- Office hours available by appointment during the week of May 7th May 11th for questions related to the final portfolio
- Final Interviews on May 15th, 1:30pm 4:15pm in this classroom (1004 Exploratory Hall)

Selecting models for the *Mario Kart* eBay prices dataset

Review: Can we predict accurately eBay prices?

- Data scraped from eBay listings for the video game *Mario Kart Wii*
- Can we predict each game's final selling price using other information on a eBay listing page?

Goal

Build a model that predicts the dataset variable totalPr using the other columns

Image: Mario Kart Wii cover art, ©Nintendo, downloaded from Wikipedia, https://en.wikipedia.org/wiki/File:Mario_Kart_Wii.png

How can we compare models?

How can we compare models?

• Model totalPr ~ cond + stockPhoto + duration + wheels seems better... but we'd like to evaluate this more precisely

How can we compare models?

- Model totalPr ~ cond + stockPhoto + duration + wheels seems better... but we'd like to evaluate this more precisely
- **k-fold cross-validation** is a popular method for comparing the predictive power of different models

• The above example illustrates a 5-fold, or k = 5, cross-validation.

- The above example illustrates a 5-fold, or k = 5, cross-validation.
- Each fold will act as a testing set, with the remaining |k-1| folds used to train the model.

- The above example illustrates a 5-fold, or k = 5, cross-validation.
- Each fold will act as a testing set, with the remaining |k-1| folds used to train the model.
- Fit model, predict values in testing set, then calculate the mean-squared prediction error (MSE)

- The above example illustrates a 5-fold, or k = 5, cross-validation.
- Each fold will act as a testing set, with the remaining |k-1| folds used to train the model.
- Fit model, predict values in testing set, then calculate the mean-squared prediction error (MSE)
- MSE gives an estimate of how well the model works as a predictor

- The above example illustrates a 5-fold, or k = 5, cross-validation.
- Each fold will act as a testing set, with the remaining |k-1| folds used to train the model.
- Fit model, predict values in testing set, then calculate the mean-squared prediction error (MSE)
- MSE gives an estimate of how well the model works as a predictor
- MSE is general-purpose and allows you to compare models of many types

Intermission: Fill out evaluation forms

Cross-validating our models

Cross-validating our models

• Load the function rep_kfold_cv() so you can practice model selection:

load(url("http://spring18.cds101.com/files/R/repeated_kfold_cross_validation.RData"))

Cross-validating our models

• Load the function rep_kfold_cv() so you can practice model selection:

load(url("http://spring18.cds101.com/files/R/repeated_kfold_cross_validation.RData"))

• This function takes a linear regression model and cross-validates it automatically for you, you just supply the following inputs:

Input	Description
data	The training dataset
k	Number of folds to use
model	Model to cross-validate written in <pre>lm()</pre> syntax
cv_reps	Number of times to repeat cross-validation sequence to improve statistics

What's in the training dataset again?

totalPr	cond	stockPhoto	duration	wheels
41.00	used	no	1	1
51.55	new	yes	3	1
53.76	new	yes	1	2
64.95	new	yes	1	2
35.99	used	yes	5	0
56.01	new	yes	1	2
45.21	used	yes	3	1
44.00	used	no	7	1
45.00	new	yes	3	0
44.00	new	yes	3	1

totalPr ~ cond

totalPr ~ cond

rep_kfold_cv(data = train, k = 10, model = totalPr ~ cond, cv_reps = 3)

totalPr ~ cond

rep_kfold_cv(data = train, k = 10, model = totalPr ~ cond, cv_reps = 3)

r_squared	mse	adjusted_mse
0.2246425	53.42795	53.30145

totalPr ~ cond

rep_kfold_cv(data = train, k = 10, model = totalPr ~ cond, cv_reps = 3)

r_squared	mse	adjusted_mse
0.2246425	53.42795	53.30145

totalPr ~ cond + stockPhoto + duration + wheels

totalPr ~ cond

rep_kfold_cv(data = train, k = 10, model = totalPr ~ cond, cv_reps = 3)

r_squared mse adjusted_mse

0.2246425 53.42795 53.30145

totalPr ~ cond + stockPhoto + duration + wheels

```
rep_kfold_cv(
    data = train, k = 10,
    model = totalPr ~ cond + stockPhoto + duration + wheels, cv_reps = 3)
```

totalPr ~ cond

rep_kfold_cv(data = train, k = 10, model = totalPr ~ cond, cv_reps = 3)

r_squared mse adjusted_mse

0.2246425 53.42795 53.30145

totalPr ~ cond + stockPhoto + duration + wheels

```
rep_kfold_cv(
   data = train, k = 10,
   model = totalPr ~ cond + stockPhoto + duration + wheels, cv_reps = 3)
```

r_squared	mse	adjusted_mse
0.566543	27.45162	27.28987

totalPr ~ cond

rep_kfold_cv(data = train, k = 10, model = totalPr ~ cond, cv_reps = 3)

r_squared mse adjusted_mse

0.2246425 53.42795 53.30145

totalPr ~ cond + stockPhoto + duration + wheels

```
rep_kfold_cv(
   data = train, k = 10,
   model = totalPr ~ cond + stockPhoto + duration + wheels, cv_reps = 3)
```

r_squared	mse	adjusted_mse
0.566543	27.45162	27.28987

Scores indicate the multivariate model performs better than the univariate model

Finding the best model

- You have been assigned 3 models according to your Table number in the chart on the right.
- Use rep_kfold_cv() to run your
 assigned models using the
 RMarkdown file in your activity repo
- Be ready to report your Adjusted
 MSE values
- Save, commit, and push when you're done

#	cond	stockPhoto	wheels	duration	Adj.MSE
NA	Х				53.3
1		Х			
1		Х	Х		
2			Х		
2		Х		Х	
3				Х	
3			Х	Х	
4	Х	Х			
4	Х	Х	Х		
5	Х		Х		
5	Х	Х		Х	
6	Х			Х	
6	Х		Х	Х	
All		Х	Х	Х	
NA	Х	х	Х	Х	27.3 ¹²

Considering a minor in CDS?

Minor in Computational & Data Sciences (CDS)

"In a world driven by data, university graduates with a solid base of data knowledge have a distinct edge in the job market."

The Department of Computational and Data Science, College of Science, offers a Computational and Data Science Minor designed to equip graduates with knowledge and skills to enhance their careers.

Benefits of a CDS Minor

Students enrolled in the CDS minor have the benefit of following their passion with their undergraduate degree while adding the data knowledge and skills employers want and entrepreneurs need.

Enrolling gives you access to CDS Department resources including:

- career coaching & career fairs
- job opportunities & networking
- internship opportunities

Considering a minor in CDS?

CDS Minor Courses (15 credits total)

The CDS Minor consists of **5 courses**:

- CDS 101 Introduction to Computational and Data Sciences or CDS 130 - Computing for Scientists
- 3 CDS courses of the following:
 - CDS 230: Modeling and Simulation I
 - CDS 251: Intro to Scientific Programming (Spring 2016)
 - CDS 301: Scientific Information and Data Visualization
 - CDS 302: Scientific Data and Databases (Spring 2016)
 - CDS 303: Scientific Data Mining
 - CDS 411: Modeling and Simulation II
- One 300+ level Science course

Enrolling in the CDS Minor

- Minor Declaration Form https://registrar.gmu.edu/wp-content/uploads/UMD.pdf
 - Please email it to Dr. Joseph Marr, jmarr2@gmu.edu
- Register for courses! (You may take a few courses before you declare).
- Have questions? Contact Dr. Joseph Marr, jmarr2@gmu.edu

Mario Kart data set source: David M Diez, Christopher D Barr, and Mine Çetinkaya-Rundel. 2012. *openintro*: OpenIntro data sets and supplemental functions. http://cran.r-project.org/web/packages/openintro

Mario Kart example loosely adapted from content in chapters 6.1, 6.2, and 6.3 of the *Introductory Statistics with Randomization and Simulation* textbook by David M Diez, Christopher D Barr, and Mine Çetinkaya-Rundel and made available under the CC BY-NC-SA 3.0 Unported license.